Water balance assessment using SWAT for Russian subcatchment of Western Dvina (Zapadnaya Dvina) river

Pavel Terskii ¹, Alexey Kuleshov²

¹Department of land hydrology, Lomonosov MSU, Moscow, Russia (<u>pavel_tersky@mail.ru</u>) ²Institute of Hydrology and Meteorology, Dresden University of Technology, Dresden, Germany

Baltic Earth

2nd Baltic Earth conference Danmark, Helsingor – 11-15 june 2018

MANTRA-Rivers (Management of Transboundary Rivers)

Funding agency:

Volkswagen Stiftung (2017-2018) **Project coordinator:**

Technische Universitat Dresden (TUD),

Germany

Project partners:

Helmholtz Center for Environmental Research (UFZ), Germany

Lomonosov Moscow State University (LMSU), Russia

Ukrainian Hydrometeorological Institute (UHMI), Ukraine

Goal:

Improvement of transboundary water resources management

Objectives:

Investigate the scientific basis for IWRM (Integrated Water Resources Management)

Promote trilateral dialog and cooperation

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

FACULTY OF GEOGRAPHY monosov Moscow State University

https://tu-

dresden.de/bu/umwelt/hydro/ihm/meteorologie/forschung /forschungsprojekte/projekt-mantra-rivers

Why this catchment and SWAT model?

Background

Russian partner aims to provide transnational system analysis and dialogue within IWRM for Western Dvina in connection to Belhydromet, Institute for Nature Management NAS RB (Minsk) and LEGMS (Latvian Environment, Geology and Meteorology Centre - Riga)

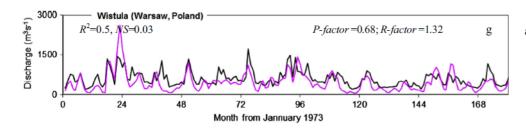
Interim tasks

1) To choose international hydrological model and develop unified catchment-based tool

- 2) To find out the open-source data, its quality and suitability
- 3) To prepare the model and obtain first results on water balance assessment

Why SWAT model?

- 1) Open access with proved international efficiency
- 2) Sediment and nutrient load calculation ability
- 3) Absence of limitations on catchment area
- 4) Partners have experience with it's implementation


Common investigations HYPE, SWAT, HYDROGRAPH models

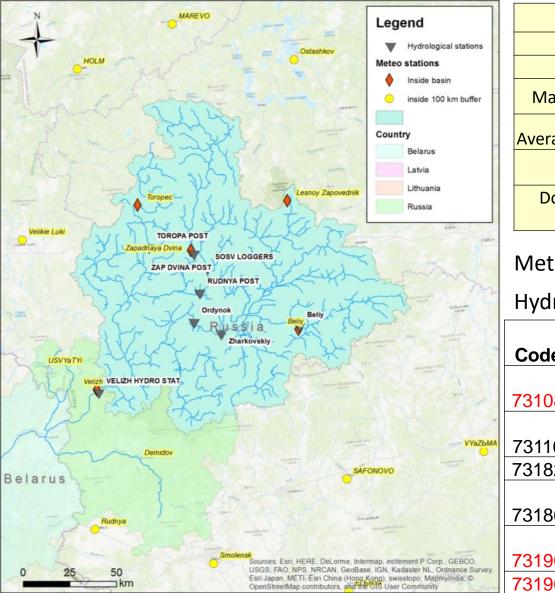
HYPE Baltic

Scale: Whole catchment Period: 1981-2014 Time step: daily Elements: Q, N, P Arheimer, B., Dahné, J., Donnelly,

C., Lindström, G., Strömqvist, J. 2011

aquatic research 🛡 000

Abbaspour K., et. al. A continentalscale hydrology... 2015

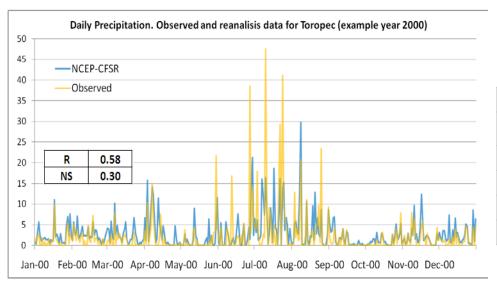

HYDROGRAPH MODE

h A. Model based estimations of

Osypov V.V. Modeling of the nitrogen and phosphorus compounds yields from the small rivers catchments of the Ukrainian forest zone ... 2017

Zhuravlev S., Danilovich I., Kurochkina L., Kvach A. Model based estimations of Western Dvina flow changes...

Hydrological and meteorological gauging network


Western Dvina - Russ	Western Dvina - Russian part (at Velizh st.)				
Area, sq.km	17600				
River length, km	366				
Main human activities	agriculture, industry				
Average runoff, cms (km3)	142 (4.5)				
EcoRegion	Mixed sarmatic forest				
Dominate soil group (HWSD)	Podzoluvisols				

Meteorological stations 1979-2016

Hydrological stations (lot of gaps)

	Code	River	Station	Q daily periods
1 1		Western	Zapadnaya	
1	73108	Dvina	Dvina	Before 1993
1		Western		Before 2004,
VYaZbMA	73110	Dvina	Velizh	2007-2014
	73182	Velesa	Rudnya	Before 2004
				before 2004,
and b	73186	Toropa	Staraya Toropa	2009-2014
				Before 1996,
EBCO,	73190	Mezha	Ordynok	2009-2014
dia. ©	73196	Obsha	Beliy	Before 1996

Weather data uncertainty (unreliable components)

Precipitation: (observed data need)

Daily sum of precipitation correlation (1979-2016)						
Smolensk	1					
VelLuki	0.61	1				
Beliy	0.31	0.21	1			
Velizh	0.55	0.74	0.29	1		
Toropec	0.60	0.56	0.48	0.57	1	
	Smolensk	VelLuki	Beliy	Velizh	Toropec	

High spatial variability

Density of stations (approx.): 1 st. per 5000 sq.km

Daily relative humidity: (observed data need)

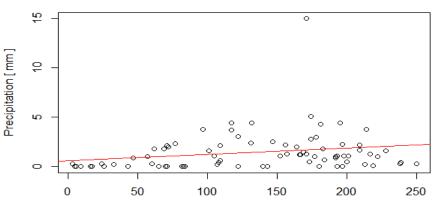
Open weather data sources used in study

- Global Surface Summary of the Day (NOAA)
- Internet database ECA&D
- ECMWF ERA-Interim reanalysis

	Global Surface Summary of the Day (GSOD)	European Climate Assessment & Dataset (ECA&D)	Earth Reanalysis ERA-Interim
Source	NOAA NCDC	KNMI	ECMWF
Spatial coverage	Global	Europe	Global
Temporal	1929 – present	1851 – present	1979-present
coverage			
Measurement	Daily	Daily	Every 6 hours
frequency			
Total number of	> 9000	> 6500	-
stations			

Which database should be used for swat modeling?

For analysis:


- index of agreement (d)
- correlation coefficient (r)

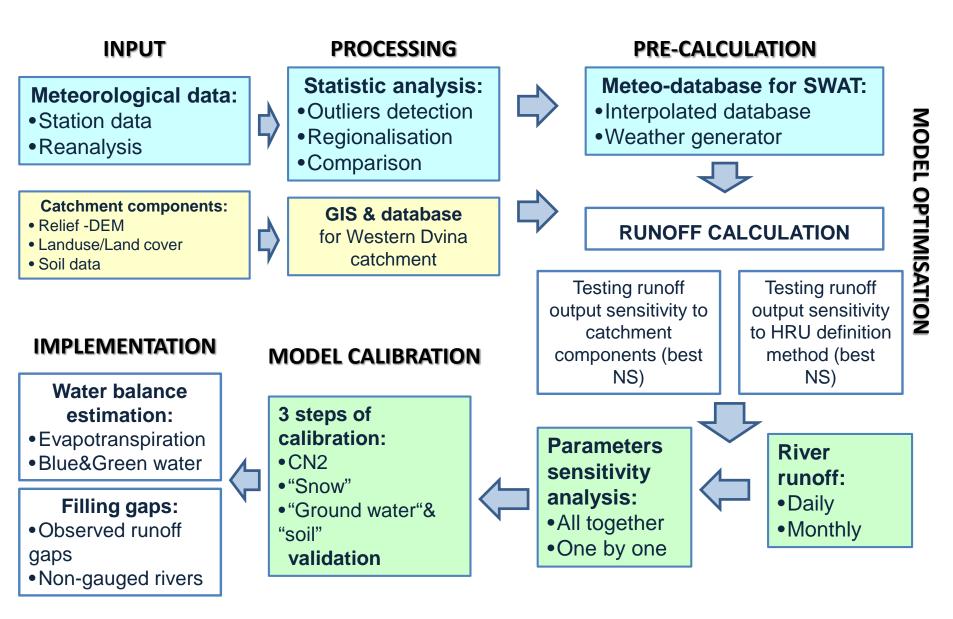
$$d = 1 - \frac{\sum_{i=1}^{n} (y_i - x_i)^2}{\sum_{i=1}^{n} (|x_i - \bar{y}| + |y_i - \bar{y}|)^2}$$

$$r = \frac{1}{(n-1)} \cdot \sum_{i=1}^{n} \frac{(x_i - \bar{x}) \cdot (y_i - \bar{y})}{(x_i - \bar{x})^2 \cdot (y_i - \bar{y})^2}$$

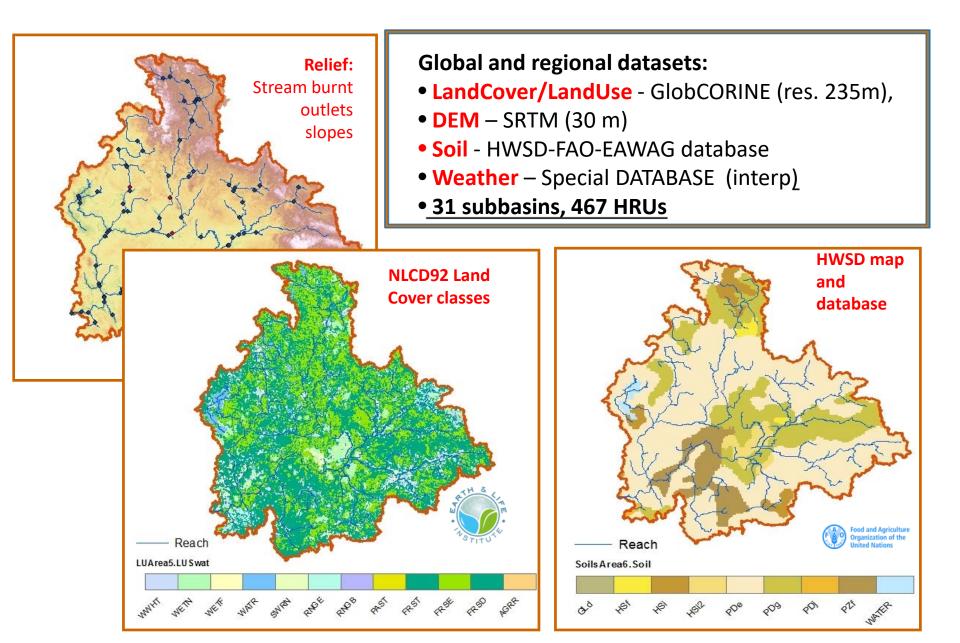
Data processing:

- 1. Plausibility analysis, detection of outliers
- 2. Regionalization of station data

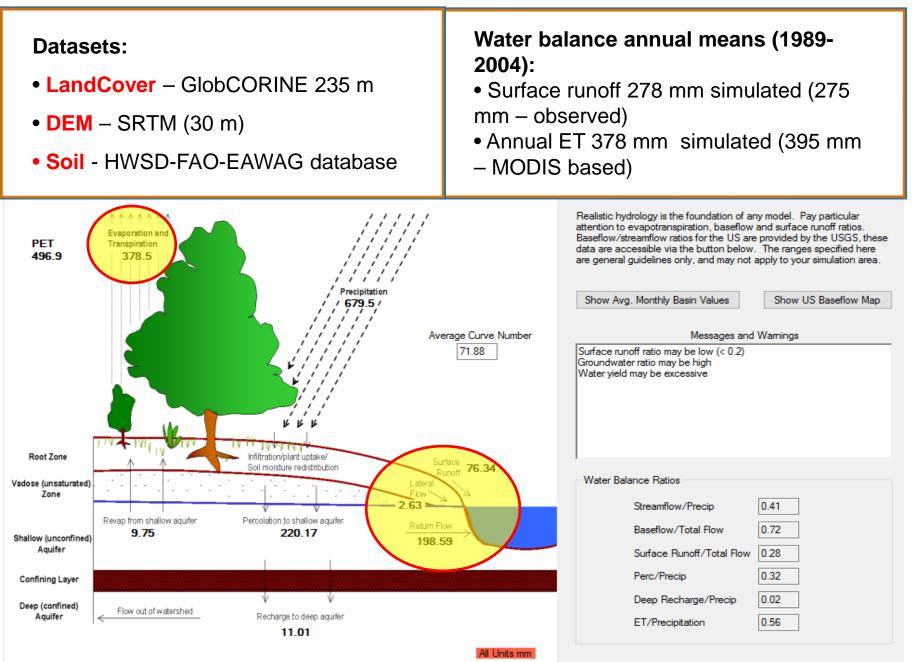
Comparing Interpolated Station Data and Reanalysis


Altitude [m]

	RR	TN	ТМ	ТХ	FF	HU
r	0.72	0.98	> 0.99	0.99	0.86	0.95
d	0.84	0.99	> 0.99	> 0.99	0.74	0.97


	Interpolated Station Data	Reanalysis
Availability of data	RR, TN, TM, TX, HU, FF	RR, TN, TM, TX, HU, FF, SSRD
Problematic elements	absence of SSRD	RR, FF

Authors would recommend using the values obtained by interpolated stations data with SSRD from ERA-Interim reanalysis


SWAT setup, uncertainty analysis, calibration and implementation – general scheme

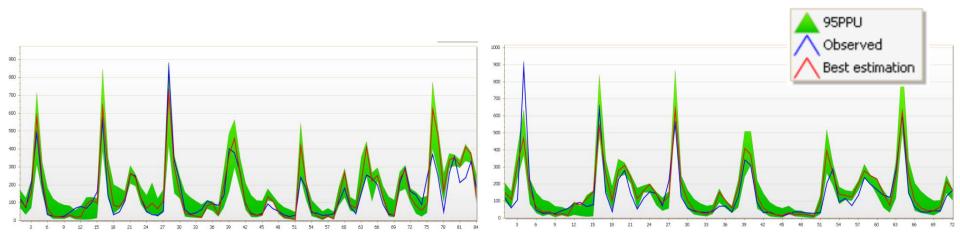
SWAT model building – monthly time step

Initial model. Annual water balance

Monthly calibration and validation

#	Parameter	Туре	Min	Max
1	CN2_FRSE,FRSD,FRST	r	-0.17	-0.02
2	CN2 RNGE,WWHT	r	-0.07	0.10
3	SFTMP	v	-0.80	2.54
4	SMTMP	v	4.71	5.60
5	SMFMX	v	11.1	12.4
6	SMFMN	v	3.45	4.52
7	SNOCOVMX	v	45.2	84.1
8	SNO50COV	v	0.21	0.37
9	SOL_AWC()	r	-0.08	0.11
10	GWQMN	а	222	567
11	GW_DELAY	а	-103	103
12	RCHRG_DP	а	0.01	0.17
13	GW_REVAP	а	0.01	0.02
14	ALPHA_BF	v	0.34	0.84
15	TIMP	v	0.09	0.27
16	ESCO	r	-0.03	0.06
17	SNO_SUB_19,10,30,16,7,26,2,24,23 ,20,31,22,6,27,5,3	r	0.00	0.19
18	SNO_SUB_21,12,14,32,1,29,17,4,28 ,9,13,15,25,11,8,18	r	0.00	0.21
19	REVAPMN.gw	r	0.01	0.07

Runoff curve number CN2 – distributed parameter


SNOWMELT parameters – lumped - separate from others calibration

Snow cover distribution – separate calibration. 80% forested area threshold

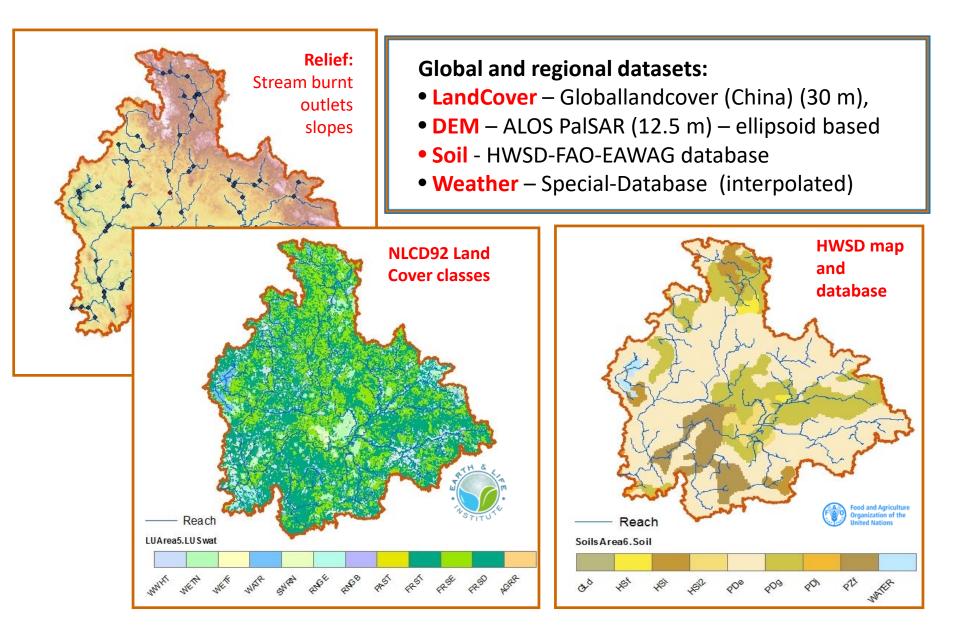
$$NS = 1 - \frac{\sum_{i}(Q_{p} - Q_{M})_{i}^{2}}{\sum_{i}(Q_{p,i} - \bar{Q}_{p})^{2}} \qquad PBIAS = \frac{\sum_{i=1}^{n}(Q_{p} - Q_{M})}{\sum_{i=1}^{n}Q_{p,i}} 100$$
$$KGE = 1 - \sqrt{(r-1)^{2} + (\alpha - 1)^{2} + (\beta - 1)^{2}}$$

$$R^{2} = \frac{\left[\sum_{i}(Q_{p,i} - \bar{Q}_{p})(Q_{M,i} - \bar{Q}_{M})\right]}{\sum_{i}(Q_{p,i} - \bar{Q}_{p})^{2}\sum_{i}(Q_{M,i} - \bar{Q}_{M})^{2}}^{2}$$

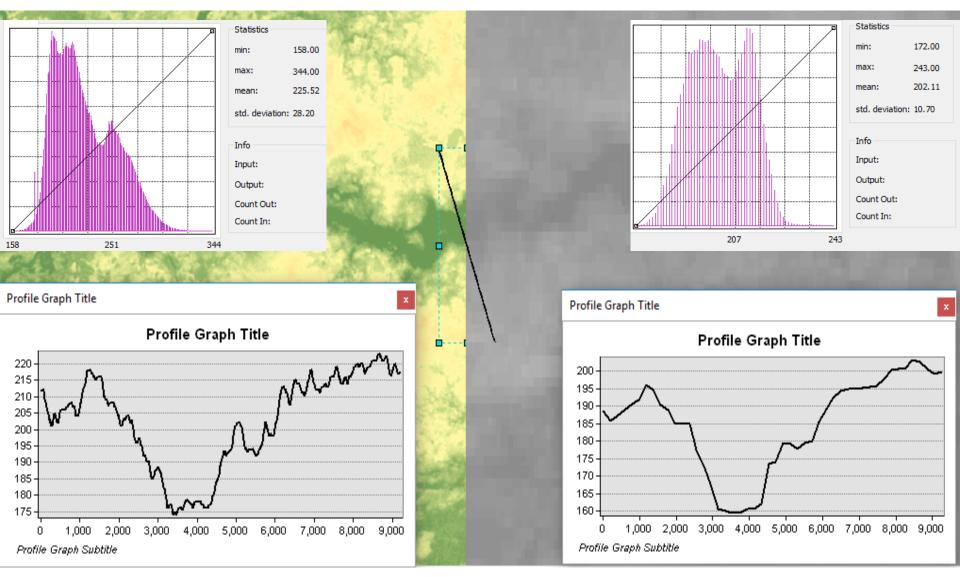
Monthly calibration and validation

Calibration 1992-1998			
53			

0.83	0.77	-11.5	0.8
R2	NS	PBIAS	KGE


Validation 1999-2004

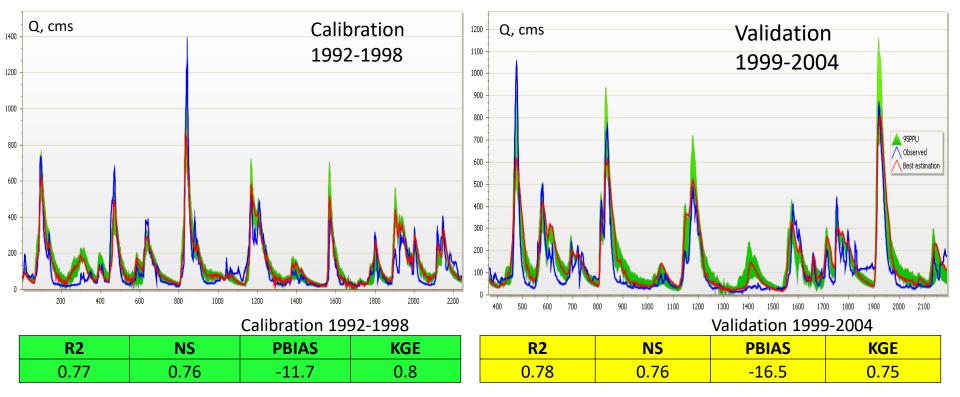
R2	NS	PBIAS	KGE
0.78	0.76	-15.5	0.78


Quality level	NS и R ²	PBIAS, %
Very good	0,75 < NS ≤ 1	PBIAS ±10
Good	0,65 < NS ≤ 0,75	±10 ≤ PBIAS < ±15
Satisfactory	0,5 < NS ≤ 0,65	$\pm 15 \le PBIAS < \pm 25$
Not satisfactory	NS ≤ 0,5	PBIAS ≥ ±25

Moriasi D.N. et.al Model evaluation guidelines ... 2007

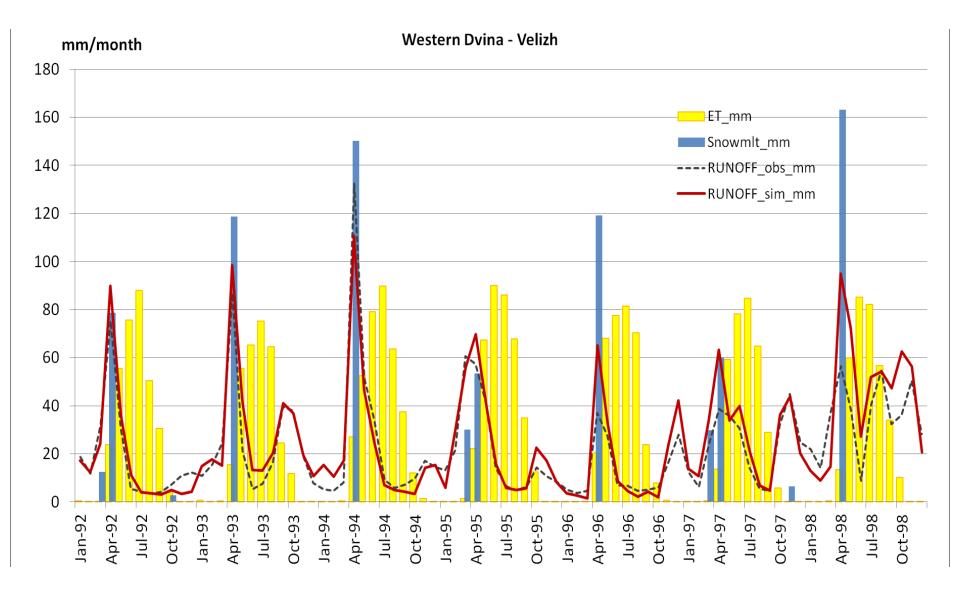
Daily model building

ALOS (12.5 m) DEM vs SRTM (30 m)

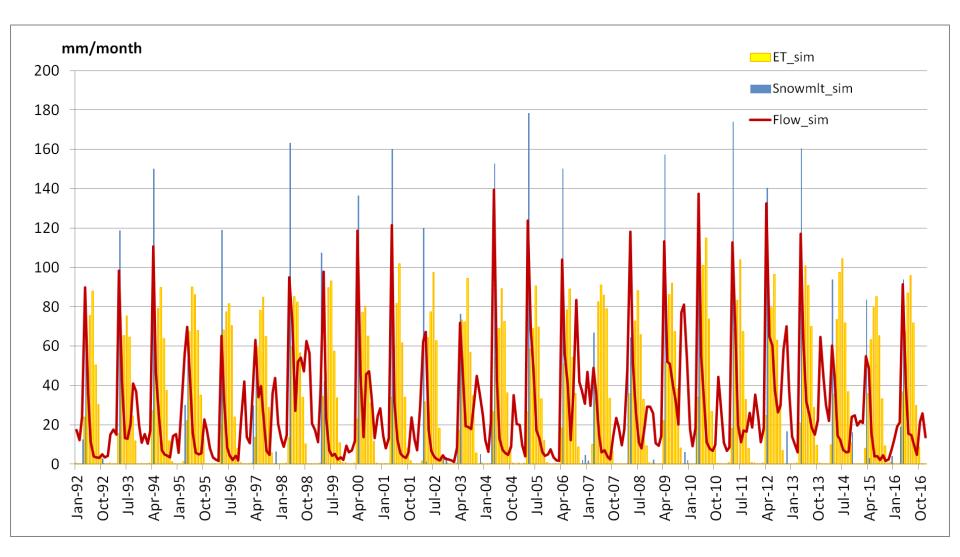


This difference affects:

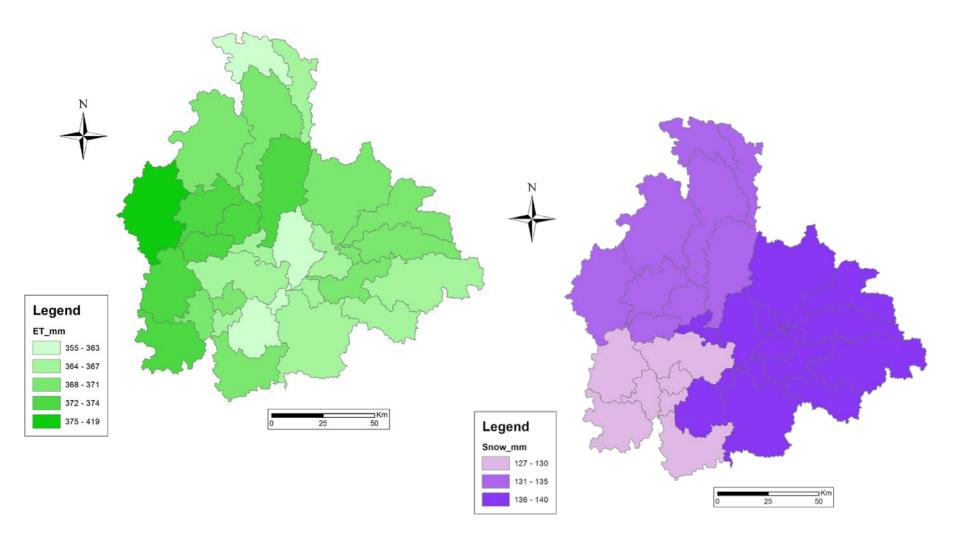
stream network delineationslope classes distribution


SWAT model 4rd step (superdetailed). Daily calibration and validation – Velizh

ET method – plant ET, Ch routing - Muskingum



Quality level	NSиR ²	PBIAS, %
Very good	0,75 < NS ≤ 1	PBIAS ±10
Good	0,65 < NS ≤ 0,75	$\pm 10 \leq PBIAS < \pm 15$
Satisfactory	0,5 < NS ≤ 0,65	±15 ≤ PBIAS < ±25
Not satisfactory	NS ≤ 0,5	$PBIAS \ge \pm 25$


Water balance time series (example)

Water balance time series

Water balance components distribution

Conclusions

- The most important input data precipitation meets with the most data deficit because of low spatial distribution and data leakage for "in-catchment" scale
- 2. Authors recommend to use interpolated observed weather data against reanalysis (except downward solar radiation)
- Using detailed DEM (12.5 m) and LandUse/LandCover (30 m) significantly improve results for daily time step, but almost does not have effect for monthly
- 4. The most sensitive are some "snow" and "groundwater" parameters, and also distributed CN2 parameter. Calibration of "snow" parameters should be done separately from others
- 5. Evaporation is simulated well, but snow water equivalent is slightly overestimated (in comparison to observed)
- 6. Soil database should be more detailed for daily time step calculations

How to improve results?

OBVIOUS REASONS OF UNCERTAINTIES:LIKELY REASONS:1. Sparse gauging network and gaps in data1. Undistributed snowmelt parameters2. Global spatial data does not considerin SWAT modellocal features2. Equifinality causes water balance3. Whole year calibration procedure doeserrors despite of good NS with runoffnot reflect snowmelt processes well3. Different scale of processes,4. Modeler's experienceinteractions and it's description

HOW TO IMPROVE MODEL BASED RESULTS?

 Use local spatial data – especially soil cover, but it is not open source data
Investigate in-catchment flow drivers functional roles and distribution
Set adequate objectives based on understanding the uncertainties
Use alternative data for calculations and constant controlling (e.g. Remote sensing, LSM models etc., field data)